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Scientific background — Sources and sinks of CO,

Balance of sources and sinks
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Source: Friedlingstein et al 2023; Global Carbon Project 2023
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Scientific background — Airborne fraction of CO,

Airborne Fraction

1.0 -
Airborne fraction representing the
proportion of total annual CO, emissions
0.8 - remaining in the atmosphere

Smoothed (7 years)

Annual
0.2 -
Around 45% of emitted CO, remains in
0 the atmosphere despite sustained
1960 1970 1980 1990 2000 2010 2023 growth in CO, emissions
projecte

Source: Friedlingstein et al 2023; Global Carbon Project 2023
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Atmospheric GHG measurement techniques and their complementarity (A

Satellite \l/
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Ground-based in-situ measurement network (surface air sampling, tower ~500 m) : ;,.__f.f
» Derived fluxes are accurate but are affected by surface exchange and vertical transport ; i mea’::f:;fems
— highly variable but poorly simulated in global models (0-30 km) )
» High precision and inter-calibration accuracy me‘:::’f‘;’;‘ims Q
» Limited / no column measurements which limits its use for satellite validation (0-20 km)
™2
o | \/ o
In-situ aircraft (0 — 20 km) / AirCore (0 — 30 km ) measurements )

» Derived fluxes are accurate, measurements are possible at several altitudes, but are currently very sparse
»  High precision and inter-calibration accuracy

FTIR

measurement
iuf ml

Ground-based remote sensing measurement networks (0 — top of the atmosphere) D
» Column and / or profile measurements of GHGs coasra/ tall towers, mountains
»  High precision and inter-calibration accuracy BN
» Direct solar absorption measurements are advantageous over the satellite measurements recording the solar reflectance from the Earth’s atmosphere.
Limited number of sites do not provide a complete global picture
» Ideal for calibration / validation of satellite instruments and model columns and carbon cycle science
»  Column measurements of GHGs in the near-IR using portable, low cost FTS (e.g., EM27/SUN, Vertex70/80, IRcube, ...)

Satellite remote sensing measurements (0 — top of the atmosphere)

Provides global measurements of total and / or partial columns of GHGs

Significant improvements in measurement and retrieval techniques over the last 19 years

Future improvements are expected to further improve the data quality and space-borne data to become more important for carbon cycle research
High quality reference data needed for detection and calibration of biases and / or temporal drifts in the sensors
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In-situ measurements of surface concentrations of GHGs
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AirCore for in-situ measurements of atmospheric concentrations of GHGs
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Membrive et al., 2017; Kairon et al., 2010
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Remote sensing measurements of atmospheric concentration of GHGs

Sun as the source

Sun tracker + FTIR spectrometer

Meteorological sensors

BIRA-IASB operates several FTIR sites and contributes to international networks
like Total Carbon Column Observing Network (TCCON), COllaborative Carbon
Column Observing Network (COCCON) and Infrared Working Group of the
Network for the Detection of Atmospheric Composition Change (NDACC-IRWG)
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https://tccon-wiki.caltech.edu/
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Remote sensing measurements of atmospheric concentration of GHGs
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(c) WMO WDCGG Original data provided by the OCO-2 project at the Jet Propulsion Laboratory, California Institute of Technology.

World Data Center for Greenhouse Gases https://gaw.kishou.go.ip/satellite/
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Understanding extreme events — in-situ and remote sensing A
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Understanding extreme events — ICOS example in Europe
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Figure 3 CO, seasonal cycles calculated from daytime measurements at the Torfhaus tower station

(147 meters above ground level), Germany. -2 Plateau Rosa, IT
Ispra, IT
The mean seasonal cycle is represented as a pink line, with the light blue area showing the standard deviation ] ] Puy de Déme, FR
B . . . . . . . : Monte Cimone, IT
(2017—2021). The cycle is characterized by a drop in concentration during spring and summer and an increase in autumn. I Lampedusa IT

Seasonal cycles observed in 2018 and 2021 are represented in orange and green respectively. - No data

@ 2018 had a warm and sunny spring. Due to the resulting high CO, uptake by the vegetation the concentration dropped early.

© During summer, a drought period dimmed the uptake resulting in a summer minimum smaller than usual, 2017 2018 2019 2020 2021
© In 2021, the high precipitation supported the CO, uptake by the vegetation, resulting in a minimum larger than usual. Figure 4 302 summertime (July—August) anomalies, 2017—2021.

La Réunion, FR

The stronger the red colour is, the less there has been CO, uptake during the period.
. . . The stronger the blue, the more the vegetation has taken up CO.. The picture also shows
FLUXES - The European Greenhouse Gas Bulletin, Volume 1, September 2022 "Are sinks at risk?" that mosﬁcos stations observed smaﬁ CO, uptakes in yeaf20128; mispis most probably
https://doi.org/10.18160/8NKQ-6551 due to the drought experienced in Europe in that summer. The stations are listed in order
of latitude from north to south.
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Take home messages A

» The global CO, emission continues to raise

» The amount of CO, in the atmosphere is strongly dependent on the response of the natural sinks to climate change

» In-situ and remote sensing measurement techniques provide complementary information on the distribution of CO, in the atmosphere

» The precise continuous monitoring helps to characterize the inter-annual differences in amplitude and phase of the seasonal cycles at the site

» Future high-spatial resolution satellite missions, such as the Copernicus Carbon Dioxide Monitoring Mission or CO2M will help to quantify
how much CO, is released into the atmosphere specifically through human activity

» Further reading — CO, in the Atmosphere: Growth and Trends Since 1850, https://doi.org/10.1093/acrefore/9780190228620.013.863

Thank you for your attention!
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